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But de la présentation

Point de départ : le titre

The nonlinear Schrödinger equation on metric graphs
(L’équation de Schrödinger non-linéaire sur les graphes métriques)

Nous éclairerons deux questions :

Quoi ? ? ?

Pourquoi ? ? ?
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Quoi ? Quoi ? Pourquoi ? Pourquoi ? Pourquoi ? Pourquoi ? Le mot de la fin

1 Quoi ? Graphes métriques

2 Quoi ? L’équation de Schrödinger non-linéaire

3 Pourquoi ? Un peu de physique

4 Pourquoi ? Un laboratoire pour la non-compacité

5 Pourquoi ? Nouveaux phénomènes

6 Pourquoi ? La contrainte comme source d’inspiration

7 Le mot de la fin
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Quoi ? Quoi ? Pourquoi ? Pourquoi ? Pourquoi ? Pourquoi ? Le mot de la fin

Graphes métriques
Un graphe métrique est composé de sommets

et d’arêtes reliant les
sommets ou allant vers l’infini.

∞

∞

∞

Graphes métriques : les longueurs des arêtes sont importantes.
Les arêtes allant vers l’infini sont des demi-droites et ont une longueur
infinie.
Un graphe métrique est compact si et seulement si il a un nombre fini
d’arêtes de longueur finie.
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Graphes métriques
Constructions basées sur des demi-droites

∞
La demi-droite

∞ ∞
La droite

∞

∞

∞

∞

∞

L’étoile à 5 branches

∞∞

∞

∞ ∞

∞

L’étoile à 6 branches
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Graphes métriques
Graphes périodiques : la grille bidimensionnelle
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Graphes métriques
Graphes périodiques : la grille tridimensionnelle

La grille tridimensionnelle
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Graphes métriques
Arbres infinis
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Graphes métriques
Fonctions définies sur des graphes métriques

G
ff0

e0

f1

e1

f2
e2

f0

f1
f2

Un graphe métrique G avec trois arêtes e0 (longueur 5), e1 (longueur 4) et e2
(longueur 3)

, une fonction f : G → R, et les trois fonctions réelles associées.

∫
G

f dx :=
∫ 5

0
f0(x) dx +

∫ 4

0
f1(x) dx +

∫ 3

0
f2(x) dx
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L’équation de Schrödinger non-linéaire
Le système différentiel (NLSG)

Étant donné des constantes p > 2 et λ ∈ R, nous nous intéressons aux
solutions u ∈ L2(G) du système différentiel



−u′′ + λu = |u|p−2u sur chaque arête e de G,

u est continue pour chaque sommet v de G,∑
e≻v

du
dxe

(v) = 0 pour chaque sommet v de G.

(NLSG)

La condition sur la somme des dérivées est appelée condition de Kirchhoff.
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L’équation de Schrödinger non-linéaire
Condition de Kirchhoff : nœuds de degré un

v
∞

lim
t−−→

t>0
0

u(v + t) − u(v)
t = 0
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Quoi ? Quoi ? Pourquoi ? Pourquoi ? Pourquoi ? Pourquoi ? Le mot de la fin

L’équation de Schrödinger non-linéaire
Condition de Kirchhoff en général : dérivées sortantes

v
∞ ∞

∑
e≻v

du
dxe

(v) = 0
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L’équation de Schrödinger non-linéaire
Le soliton ϕλ sur la droite réelle

∞ ∞

L’ensemble des solutions non nulles de (NLSG) est

Sλ(R) =
{

±ϕλ(x + a)
∣∣∣ a ∈ R

}
où le soliton ϕλ est l’unique solution positive et paire de

−u′′ + λu = |u|p−2u.
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L’équation de Schrödinger non-linéaire
La demi-droite : G = R+

∞

Sλ(R+) =
{

±ϕλ(x)|R+

}
Les solutions sont des demi-solitons : plus de translations !
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L’équation de Schrödinger non-linéaire
La solution positive sur l’étoile à 3 branches
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L’équation de Schrödinger non-linéaire
Une famille continue de solutions sur l’étoile à 4 branches
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L’équation de Schrödinger non-linéaire
Une approche plus conceptuelle : la fonctionnelle d’action

Sur les étoiles, on peut déterminer toutes les solutions de (NLSG) “à la
main”.

En général, nous avons besoin d’une approche plus conceptuelle.

Nous travaillons sur l’espace de Sobolev

H1(G) :=
{

u : G → R
∣∣∣ u est continue, u, u′ ∈ L2(G)

}
.

Les solutions de (NLS), λ étant donné, correspondent aux points critiques
de la fonctionnelle d’action

Jλ(u) := 1
2

∫
G

|u′|2 dx + λ

2

∫
G

|u|2 dx − 1
p

∫
G

|u|p dx .

Comment trouver de tels points critiques ?
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Un peu de physique
Motivations

Modélisation de structures où une seule direction spatiale est importante.

∞

∞

∞

Un « graphe épais » et le graphe métrique sous-jacent
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Un peu de physique
Condensats de Bose-Einstein

Lorsque N bosons identiques sont refroidis à une température très
proche du zéro absolu, ils occupent un état quantique de plus basse
énergie unique.

Source : https://toutestquantique.fr/condensation-de-bose-einstein/

Phénomène quantique macroscopique remarquable !
Depuis les années 2000 : émergence de l’atomtronique, qui étudie des
circuits guidant la propagation d’atomes ultra-froids

→ confinement
du condensat dans un réseau, modélisé par un graphe.
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Un peu de physique
Émergence de la non-linéarité

Lorsque le nombre de particules N devient grand, l’état fondamental
ψ(x1, . . . , xN) du système quantique à N corps devient « presque
factorisé » :

ψ(x1, . . . , xN) ≈ ϕ(x1) · · ·ϕ(xN),

où Nϕ ∈ H1(G) minimise la fonctionnelle de Gross-Pitaevskii

EGP(u) = 1
2

∫
G

|u′(x)|2 dx + 8πα
∫

G
|u(x)|4 dx

sous la contrainte
∫

G u2 dx = N.

La constante α dépend de l’intensité de l’interaction entre deux particules.

Ici, α < 0.
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Un peu de physique
La fonctionnelle d’énergie

Nous sommes ainsi amenés à étudier les points critiques contraints de la
fonctionnelle d’énergie

E (u) := 1
2

∫
G

|u′|2 dx − 1
p

∫
G

|u|p dx

sous la contrainte de masse ∫
G

|u|2 dx = µ.

Un tel point critique satisfait (NLSG) pour un certain λ ∈ R qui apparaît
comme un multiplicateur de Lagrange.
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Un laboratoire pour la non-compacité
La variété de Nehari

La fonctionnelle d’action Jλ, définie par

Jλ(u) := 1
2

∫
G

|u′|2 dx + λ

2

∫
G

|u|2 dx − 1
p

∫
G

|u|p dx ,

n’est pas minorée sur H1(G).

En effet, si u ̸= 0, alors

Jλ(tu) = t2

2

∫
G

|u′|2 dx + λt2

2

∫
G

|u|2 dx − tp

p

∫
G

|u|p dx −−−→
t→∞

−∞.

Une stratégie courante consiste à introduire la variété de Nehari Nλ(G),
définie par

Nλ(G) :=
{

u ∈ H1(G) \ {0}
∣∣∣ J ′

λ(u)[u] = 0
}

=
{

u ∈ H1(G) \ {0}
∣∣∣ ∫

G
|u′|2 dx + λ

∫
G

|u|2 dx =
∫

G
|u|p dx

}
.
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Un laboratoire pour la non-compacité
La variété de Nehari (Merci à C. Troestler pour l’image !

unλ(u)u∈
Nλ

0

Si u ∈ Nλ(G), alors

Jλ(u) =
(1

2 − 1
p

) ∫
G

|u|p dx .

En particulier, Jλ est minorée sur Nλ(G).
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Un laboratoire pour la non-compacité
Deux niveaux d’action

Niveau d’action du ground state :

JG(λ) := inf
u∈Nλ(G)

Jλ(u).

Ground state : fonction u ∈ Nλ(G) de niveau JG(λ). C’est une
solution du système différentiel (NLSG).
Niveau minimal parmi les solutions de (NLS) :

σG(λ) := inf
u∈Sλ(G)

Jλ(u)

où Sλ(G) est l’ensemble des solutions non nulles de (NLSG).
Solution d’action minimale : solution u ∈ Sλ(G) du système
différentiel (NLSG) de niveau σG(λ).
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Un laboratoire pour la non-compacité
Quatre cas

Les situations suivantes sont possibles :

A1) JG(λ) = σG(λ) et les deux infima sont atteints ;
B1) JG(λ) < σG(λ), σG(λ) est atteint mais pas JG(λ) ;
A2) JG(λ) = σG(λ) et aucun infimum n’est atteint ;
B2) JG(λ) < σG(λ) et aucun infimum n’est atteint.
Remarque : dans les cas A2 et B2, il doit y avoir une infinité de solutions
de niveaux différents.

Theorem (De Coster, Dovetta, G., Serra (2023))
Pour tout p > 2, tout λ > 0 et tout choix d’une alternative parmi A1, B1,
A2, B2, il existe un graphe métrique G où cette alternative se produit.
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Un laboratoire pour la non-compacité
Cas A1 : JG(λ) = σG(λ) et les deux infima sont atteintes

Graphes compacts

∞ ∞
La droite

∞
La demi-droite

∞ ∞
Graphes avec un nombre fini d’arêtes tels que
JG(λ) < sλ := Jλ(ϕλ)
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∞

∞

∞

∞

∞

∞∞

∞

∞ ∞

∞

Étoiles à N branches, N ≥ 3

sλ = JG(λ) < σG(λ) = N
2 sλ
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Un laboratoire pour la non-compacité
Cas A2 : JG(λ) = σG(λ) et aucun infimum n’est atteint

∞
v1

L1

v2

L2

v3

L3

v4

L4

v5

L5

v6

L6

· · ·· · ·· · ·· · ·· · ·· · ·· · ·

· · ·

sλ = JG(λ) = σG(λ)
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Un laboratoire pour la non-compacité
Cas B2 : JG(λ) < σG(λ) et aucune infimum n’est atteint

∞ ∞ ∞ ∞ ∞ ∞ ∞∞ ∞ ∞ ∞ ∞ ∞ ∞

v0 v1 v2 v3v−1v−2v−3

L1 L2 L3L−1L−2L−3

B

R−3 R−2 R−1 R0 R1 R2 R3

sλ = JG(λ) < σG(λ)
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Nouveaux phénomènes
Nodal action ground states

Les nodal action ground states sont les minimiseurs de la
fonctionnelle d’action Jλ sur l’ensemble de Nehari nodal

N nod
λ (G) :=

{
u ∈ H1(G)

∣∣∣ u± ∈ Nλ(G)
}

où u+ := max(u, 0) et u− := min(u, 0).

S’ils existent, les nodal action ground states sont des solutions de
(NLSG) qui changent de signe.
Ils n’existent pas toujours en raison d’une possible perte de compacité.
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Nouveaux phénomènes
Votre graphe préféré possède-t-il des ground states ? (Merci à C. De Coster et E. Serra !

Graphe (sans sommets de Dirichlet) Ground state Nodal GS
droite réelle, demi-droite Oui Non
graphes en étoile (N ≥ 3) Non Non

têtard (tadpole) Oui Non
graphe en T Oui Non

panneau (signpost) Oui Non
fourche (fork) Oui Dép. longueurs

connexion des graphes précédents Dép. longueurs Dép. longueurs
tour de bulles Oui Non

droite avec ponts Non Non
graphes avec 1 long pendant Oui Dép. longueurs

graphes avec 2 longs pendants Oui Oui
graphes périodiques Oui Non

arbres réguliers Oui Non
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Nouveaux phénomènes
Échec du principe de prolongement unique

Theorem (De Coster, Dovetta, G., Serra, Troestler (2024))
Pour tous entiers naturels k,m, n avec m ≥ 2, il existe un graphe G et un
nodal action ground state u sur G tels que l’ensemble u−1({0}) est l’union
de k points isolés, m demi-droites et n segments de droite.

∞ ∞

∞ ∞ ∞ ∞ ∞
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Nouveaux phénomènes
Symétries intéressantes : le graphe du tétraèdre

Il est intéressant de comprendre les ensembles nodaux de certaines
solutions et le phénomène de solutions s’annulant sur des arêtes.

Nous
avons étudié ces questions dans le régime asymptotique p ≈ 2.
Le graphe du tétraèdre a été analysé en détail.

v0

v1

v2

v3

Pour réaliser cette analyse, nous avons utilisé une preuve assistée par
ordinateur.
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La contrainte comme source d’inspiration
Solutions normalisées

Une solution normalisée de (NLS) sur Ω ⊆ RN est une solution u ∈ H1
0 (Ω)

de
−∆u + λu = |u|p−2u,

dont la norme L2 est fixée et où le paramètre λ ∈ R est laissé libre.

Cela correspond à un point critique de la fonctionnelle d’énergie

E (u) := 1
2

∫
Ω

|∇u|2 dx − 1
p

∫
Ω

|u|p dx

sur la sphère L2

Mµ(Ω) :=
{

u ∈ H1
0 (Ω)

∣∣∣ ∫
G

|u|2 dx = µ
}
.

On peut montrer que E est :
bornée inférieurement sur Mµ si 2 < p < 2 + 4

N (= 6 si N = 1) ;
non bornée inférieurement sur Mµ si 2 + 4

N < p < 2∗.
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La contrainte comme source d’inspiration
Deux questions

Comment trouver des solutions normalisées (d’énergie minimale) dans le
régime L2-supercritique 2 + 4

N < p < 2∗ ?

Comment trouver des solutions normalisées nodales ?

Au début de la thèse :

la première question avait reçu beaucoup d’attention dans la
littérature pour Ω = RN , suite aux travaux fondateurs de L. Jeanjean
dans les années 1990 ;
la seconde question était essentiellement inexplorée.
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La contrainte comme source d’inspiration
État de l’art des solutions normalisées avant la thèse

Les articles traitant des généralisations des résultats d’existence de
solutions normalisées lorsque 2 + 4

N < p < 2∗ sont restés très proches de
la technique initiale de Jeanjean,

souvent au prix d’hypothèses techniques
fortes sur les équations étudiées.

Comment réaliser une véritable extension des résultats sans faire trop
d’hypothèses techniques ?
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La contrainte comme source d’inspiration
La philosophie

Peut-être que les écrivains pourraient nous montrer la voie...

La contrainte agit d’abord comme un stimulant de la création : bornant
l’imaginaire, elle fait paradoxalement prendre conscience à l’écrivain de
l’étendue de sa liberté, d’où son efficacité en matière de production du
texte. Le texte jaillit, ici et maintenant, poussé par une nécessité externe
qui permet de lutter contre les vents internes qui pourraient se montrer
contraires.

— Usage de la contrainte, Paul Fournel (membre de l’Oulipo)
Source : https://www.oulipo.net/fr/usage-de-la-contrainte.

En remplaçant RN par des graphes métriques non compacts, on est
contraint de changer de méthode, avec l’avantage de travailler en
dimension un.
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La contrainte comme source d’inspiration
Quelques retombées du périple à travers les graphes

Nouvel outil « abstrait » :
J. Borthwick, X. Chang, L. Jeanjean, N. Soave
Bounded Palais-Smale sequence with Morse type information
for some constrained functionals
Transactions of the AMS, Vol. 377, No. 6 (2024)

→ Appliqué pour obtenir un résultat de multiplicité de solutions
normalisées pour un problème L2-supercritique sur les graphes.
Nouveaux liens entre l’action et l’énergie :

S. Dovetta, E. Serra, P. Tilli
Action versus energy ground states in nonlinear Schrödinger
equations
Mathematische Annalen, Vol. 385 (2023)

→ Étendu à un résultat d’existence pour les solutions normalisées.
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La contrainte comme source d’inspiration
Masses des nodal action ground states

Theorem (De Coster, Dovetta, G., Serra (2024))
Soit Ω ⊂ RN un ouvert borné. Pour tout p ∈ ]2, 2∗[, soit

Mp(Ω) :=
{∫

Ω
|u|2 dx

∣∣∣∣ u ground state pour un λ ∈ R
}
,

Mnod
p (Ω) :=

{∫
Ω

|u|2 dx
∣∣∣∣ u nodal GS pour un λ ∈ R

}
.

Alors,
(i) si 2 < p < 2 + 4

N , alors Mp(Ω) = Mnod
p (Ω) = ]0,+∞[ ;

(ii) si p ≥ 2 + 4
N , alors il existe µp, µ

nod
p ∈ ]0,+∞[ tels que

(0, µp) ⊆ Mp(Ω) ⊆ ]0, µp] et (0, µnod
p ) ⊆ Mnod

p (Ω) ⊆ ]0, µnod
p ].
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Le mot de la fin
Messages à retenir

Les graphes métriques permettent d’étudier des problèmes
unidimensionnels intéressants et sont bien plus riches que la classe
habituelle des intervalles de R.

La physique sera toujours une grande source d’inspiration pour les
mathématiciens.

Parfois, la meilleure façon de progresser sur un problème est d’en
considérer un autre.
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Le mot de la fin

Si vous avez un problème difficile...

pourquoi ne pas l’essayer d’abord sur les graphes métriques ?

Merci !
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